You are given an array a with n elements. Each element of a is either 0 or 1.
Let's denote the length of the longest subsegment of consecutive elements in a, consisting of only numbers one, as f(a). You can change no more than k zeroes to ones to maximize f(a).
The first line contains two integers n and k (1 ≤ n ≤ 3·105, 0 ≤ k ≤ n) — the number of elements in a and the parameter k.
The second line contains n integers ai (0 ≤ ai ≤ 1) — the elements of a.
On the first line print a non-negative integer z — the maximal value of f(a) after no more than k changes of zeroes to ones.
On the second line print n integers aj — the elements of the array a after the changes.
If there are multiple answers, you can print any one of them.
7 1 1 0 0 1 1 0 1
4 1 0 0 1 1 1 1
10 2 1 0 0 1 0 1 0 1 0 1
5 1 0 0 1 1 1 1 1 0 1
记录0出现的位置,随便写几组数据可以发现要判断起始点是否为0的情况。
若起始点为0,则要判断sum[r]-sum[l]+1<=k;否则要判断sum[r]-sum[l]<=k。然后再判断一下k是否为0即可
代码:
#include#include #include #include #include #include #include #include #include #include #include #include